Resistance Report Austria
AURES 2016

Summary
Imprint

Owner, Editor and Publisher:

Federal Ministry of Health and Women´s Affairs
Radetzkystraße 2, 1030 Wien, www.bmgf.gv.at

Responsible for the content:

SC Dr. in Magdalena Arrouas
Managing Head of Section III (Public Health and Medical Affairs)

GL Dr. Ulrich Herzog
Head of Group II/B (Consumer Health and Veterinary Affairs)

Coordination:

DDr. in Reinhild Strauß, MSc
Head of the Department III/1 (Public Health Service, Antimicrobial Resistance, Hospital Hygiene, Healthcare Associated Infections)

Prim. a Univ.-Prof. in Dr. in Petra Apfalter
Representative of section overarching mechanism for the prudent use of antimicrobial agents (ISCM), Head of the National Reference Centre for nosocomial infections and antibiotic resistance, Linz

Dr. in Elfriede Österreicher
Deputy Head Department II/B/15 (Zoonoses and coordination of international matters of the sector)

Layout:

Corporate Design BMGF

Layout cover and foreword:

Gabriela Götz-Ritchie, Department I/B/8

1. Edition: November 2017

Comment:

The members of the editorial team of the full report “AURES 2016” can be found at AURES 2016.
Introductory Remarks

The AURES – the report on antimicrobial resistance in Austria – has been published by the Federal Ministry of Health and Women’s Affairs on an annual basis, thereby providing for the observation of the development of the resistance situation in Austria and, hence, deducing strategic measures and decisions therefrom. The rational and selected use of antimicrobially effective drugs represents an important prerequisite for a successful therapy of infections also in the future.

With the summary of the AURES, there is to be enabled a simple form of access to information regarding antibiotic resistance. In this way, the significance of antimicrobial resistance for the treatment of humans and animals having acquired a disease may be explained to a broader public. Furthermore, the awareness of the importance of the proper handling of antimicrobial substances may be increased in this way.

Yours,

Pamela Rendi-Wagner, MD, MSc
Federal Minister of Health and Women’s Affairs
TABLE OF CONTENTS

INTRODUCTORY REMARKS .. 3

TABLE OF CONTENTS .. 4

LIST OF ABBREVIATIONS ... 5

INITIAL SITUATION ... 7

Antimicrobial resistance in selected bacterial invasive infectious pathogens .. 11

Project report CARBA-Net .. 12

Resistance report for selected non-invasive pathogens ... 13

Resistance report *Neisseria meningitidis* ... 14

Resistance report *Campylobacter* .. 14

Resistance report *Salmonella* ... 15

Resistance report *Shigella* .. 15

Resistance report *Yersinia* .. 16

Resistance report Tuberculosis 2016 .. 16

Resistance report *Neisseria gonorrhoeae* ... 17

Resistance report Yeasts ... 17

Resistance report Moulds ... 18

Resistance report of the Austrian HIV Cohort Study Part 1: Transmission of drug-resistant HIV in Austria ... 19

Resistance report of the Austrian HIV Cohort Study Part 2: Resistance development under antiretroviral therapy ... 20

Report of antibiotic resistance monitoring according to the commission implementing decision 2013/652/EU in Austria, 2016 .. 21

European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) .. 22

Antimicrobial Consumption in Human Medicine in Austria .. 23

Resistance report *Erwinia amylovora* .. 25

OVERVIEW CONTRIBUTIONS, AUTHORS AND REVIEWERS .. 26
LIST OF ABBREVIATIONS

Table 1: List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Long text</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGES</td>
<td>Austrian Agency for Health and Foodsafety</td>
</tr>
<tr>
<td>AMR</td>
<td>Antimicrobial resistance</td>
</tr>
<tr>
<td>ART</td>
<td>Antiretroviral therapy</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td>AURES</td>
<td>Austrian Report on Antimicrobial Resistance</td>
</tr>
<tr>
<td>BIOHAZ</td>
<td>Biological Hazards</td>
</tr>
<tr>
<td>BMGF</td>
<td>Federal Ministry of Health and Women’s Affairs</td>
</tr>
<tr>
<td>CASCADE</td>
<td>Co-operative Air Traffic Services Through Surveillance and Communications Applications Deployed in ECAC</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and Laboratory Standards Institute</td>
</tr>
<tr>
<td>EARS-Net</td>
<td>European Antimicrobial Resistance Surveillance Network</td>
</tr>
<tr>
<td>ECAC</td>
<td>European Civil Aviation Conference</td>
</tr>
<tr>
<td>EFSAs</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>ESAC-Net</td>
<td>European Surveillance of Antibiotic Consumption Network</td>
</tr>
<tr>
<td>ESBL</td>
<td>Extended spectrum beta-lactamase</td>
</tr>
<tr>
<td>ESVAC</td>
<td>European Surveillance of Veterinary Antimicrobial Consumption</td>
</tr>
<tr>
<td>EU</td>
<td>Europe/European</td>
</tr>
<tr>
<td>EUCAST</td>
<td>European Committee on Antimicrobial Susceptibility Testing</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrugresistance</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>MSSA</td>
<td>Methicillin-sensitive Staphylococcus aureus</td>
</tr>
<tr>
<td>NNRTI</td>
<td>Non-nucleoside reverse transcriptase inhibitors</td>
</tr>
<tr>
<td>NRTI</td>
<td>Nucleoside reverse transcriptase inhibitors</td>
</tr>
<tr>
<td>OIE</td>
<td>World Organization for Animal Health</td>
</tr>
<tr>
<td>STD</td>
<td>Sexual transmitted diseases</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TDR-Tuberkulose</td>
<td>Transmitted drug-resistant tuberculosis</td>
</tr>
<tr>
<td>VRE</td>
<td>Vancomycin-resistant enterococci</td>
</tr>
<tr>
<td>WHA</td>
<td>World Health Assembly</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XDR-Tuberkulose</td>
<td>Extensively drug-resistant tuberculosis</td>
</tr>
</tbody>
</table>
INTRODUCTION

The present summary of the AURES 2016 has resulted from the full version of the AURES 2016, an inter-departmental co-operation in the field of human and veterinary medicine as well as food technology. Like in the reports of the previous years, the aim of the AURES 2016 is the sustainable and comparative illustration of representative data on antimicrobial resistance and on the consumption of antimicrobial agents with special consideration of Austrian characteristics and development trends over time. The data provided by National Reference Centres, appointed by the Federal Ministry of Health and Women’s Affairs, and the respective projects are illustrated in separate chapters. This method has been chosen in order to take into account the different approaches used in data collection. Direct comparison with data from veterinary medicine and human medicine is only possible to a limited extent at the present on account of the use of different test procedures and/or laboratory methods and antimicrobial limit values (epidemiological cut-offs and clinical limit values). The AURES provides data for a comprehensive professional discussion and will subsequently contribute to the optimization of the use of antimicrobial agents in Austria. The present short version is composed of the summaries of the individual chapters of the AURES. In this way, a first introduction to the subject of antimicrobial resistance and a brief survey on the situation in Austria will be made available. Details on the individual chapters may be found in the long version of the AURES 2016.
INITIAL SITUATION

Antibiotics have been used for decades for the treatment and prevention of infectious diseases and infections. The use of antimicrobial agents has highly contributed to the improvement of the state of health of human beings and animals. Antibiotics are indispensable in modern medicine and procedures; transplantations, chemotherapies to treat cancer or orthopaedic surgery, all these could not be performed without antibiotics. A steady increase of resistant microorganisms, however, has been associated with the wide application thereof. The Health Ministers of the European Union in the year 2012 issued a declaration, emphasizing that this increasing antibiotic resistance in Europe and all over the world constitutes a growing health hazard for human beings and animals, leading to limited or inadequate treatment options and, hence, diminishing the quality of life [1]. The World Health Organization (WHO) had chosen as the primary issue in 2011 for the World Health Day on April 7 the theme of “Antimicrobial resistance: no action today, no cure tomorrow” [2]. Since 2008, on the initiative of the European Parliament, the European Antibiotic Awareness Day has been held annually on November 18, with the objective to inform the population as well as those skilled in the art on the prudent use of antimicrobially active agents. Furthermore, the problem of antimicrobial resistance was included in the working programme of the European Commission in 2015 as a “key priority” (being of highest importance and priority) [3]. The topic of antibiotic resistance was part of the agenda of the G7 Summit in 2015 in Schloss Elmau, Germany. The global action plan of the WHO is to be supported and promoted. The G7 member nations aim at following the approach of “One Health” [4].

In human medicine, the use of antibacterial agents for the treatment of viral infections, the unjustified use of agents having an extremely wide action spectrum, too long “prophylactic” use of antibiotics with surgical interventions and the use of antibiotics in the case of mere colonization (and not infection) of the patient are considered the essential reasons and causes of the resistance problem. Furthermore, patients (in the case of children, their parents) with therapy demands contribute to the improper use of antibiotics. The causal relationship between antibiotic use and development of resistance in bacteria may clearly be demonstrated for both infections in patients of medical practitioners as well as nosocomial infections [5]. Already in the Council Recommendation of November 15, 2001 for the prudent use of antimicrobial agents in human medicine, the member states were asked to ensure that specific strategies for the prudent use of antimicrobial agents are available and are implemented with the object to limit the increase of microorganisms being resistant to these agents [6].

Attempts to reduce the development of resistance through a rational use of antibiotics by general practitioners have been found on a European level [7]. These efforts are mainly directed at the omission of antibiotic use in the treatment of viral infections. The fact that high-quality microbiological diagnostics is not available throughout Austria makes it in many cases difficult for the physician to clearly differentiate between infections requiring treatment and such that do not require antimicrobial therapies; in addition, it is frequently only possible to start with a very broad antimicrobial therapy. This will result in unnecessary use of antibiotics and the preferred use of agents having a wide spectrum of action – both being factors that promote the development of antibiotic resistance due to an immanent selection pressure. Due to the improved treatability of viral diseases, also drug-resistant viruses are gaining increasing importance. The biggest hazard caused by drug-resistant viruses is currently posed by HIV infection. This may lead to a limited or absent effectiveness of the anti-retroviral therapy with patients being already in treatment as well as with persons infected with these resistant viruses.
In hospitals, and especially in the intensive care units, multi-resistant hospital pathogens have been considered a problem of everyday life. The combination of "immunocompromised" patients, the intensive and prolonged use of antibiotics as well as the transmission of pathogens between patients will lead to the occurrence of infections with multi-resistant pathogens, which sometimes will not be responsive to antibiotic therapy anymore. In the document "WHO Global Strategy for Containment of Antimicrobial Resistance", the World Health Organization refers to hospitals as "a critical component of the antimicrobial resistance problem worldwide" [8].

Although it is still true that "most of the problems with resistance in human medicine are correlated to use of antimicrobials in humans", it is currently in no way doubted that, in the field of foodstuff having animal origin, the antibiotic resistance is also of significance [9, 10]. The Panel on Biological Hazards (BIOHAZ) of the European Food Safety Authority (EFSA) already in the year 2008 recommended the elaboration and implementation of specific measures for the control of raw poultry, pork and beef, wherein measures for countering antibiotic resistance were classified as a priority [11]. In the veterinary field, in Austria already since 2004 compulsory surveillance of the prevalence of zoonoses and selected zoonotic pathogens as well as their susceptibility to antimicrobial agents in the livestock population of Austria has been carried out (in the form of randomized sampling schemes in healthy slaughtered animals – cattle, pork, poultry) [12]. The OIE (World Organization for Animal Health) has elaborated recommendations for countering antimicrobial resistance in order to protect the health of animals and ensure food safety [13]. In regard to the surveillance of the antibiotic resistance and the ascertainment of antibiotics volume flows there have been existent guidelines for the harmonization of national programmes as well as recommendations on the prudent use of antibiotics in veterinary medicine and on the risk assessment of antibiotic resistance with the treatment of animals as well as for laboratory methods for the detection of antibiotic resistance.

The increasing antibiotic resistance of human pathogens currently constitutes a problem, which requires the willingness of all fields and sectors involved (human medicine, veterinary medicine, primary livestock production, food processing and food preparation, consumers) to assume responsibility in their respective areas of influence in order to impede the development and further distribution of antimicrobial resistance. The World Health Assembly (WHA) as the supreme decision-making organ of the World Health Organization (WHO) on May 25, 2015, passed a resolution asking all WHO member states to develop concrete national action plans for countering the problem of antimicrobial resistance within two years (until 2017), with the aspect of "ensuring sustainable investment in countering AMR" being one of the five objectives determined [14].

The issue antibiotic resistance was discussed on occasion of the G7 Summit in Schloss Elmau (7th to 8th June 2015) [15].

In the year 2016 the conclusions of the Council regarding the next steps within the concept of "One Health" for combatting antimicrobial resistance were published [16]. On September 21, 2016, the problem of antimicrobial resistances was addressed on the level of the General Assembly of the United Nations [17]. As a result a political declaration was published ("Political declaration of the high-level meeting of the General Assembly on antimicrobial resistance") [18]. The European Commission published a new action plan against antimicrobial resistance in 2017 [19].

Co-ordinated measures for countering the distribution of antimicrobial resistance are in need of surveillance systems. Only with these, it will be possible to assess how local and global resistance situations will react to an altered use of antibiotics and new measures for infection control. In the field of human medicine, many Austrian hospitals participate in the European system for the surveillance of resistance to antimicrobial agents ("European Antimicrobial Resistance Surveillance..."
Network (EARS-Net)) and in the “European Surveillance of Antibiotic Consumption Network” (ESAC-Net). EARS-Net and ESAC-Net are surveillance programmes initiated by the Community and confirmed in their importance by the EU Council, wherein standardized, harmonized and comparative human medicine data on the resistance to bacterial pathogens and/or the use of antibiotics are being sampled and collected [1]. The present Resistance Report makes available to the public the data acquired within the network of the Austria-wide resistance surveillance.

References

Antimicrobial resistance in selected bacterial invasive infectious pathogens

Data from the human sector

An activity by the National Reference Centre for nosocomial infections and antibiotic resistance within the scope of participation in the European Antimicrobial Resistance Surveillance Network (EARS-Net)

Authors / contact persons

Prim. a Univ.-Prof. in Dr. in Petra Apfalter
Gerhard Fluch
Ordensklinikum Linz GmbH Elisabethinen
Institute of Hygiene, Microbiology and Tropical Medicine
National Reference Centre for nosocomial infections and antibiotic resistance, Linz

European Antimicrobial Resistance Surveillance Network (EARS-Net)

The Austrian EARS-Net data represent a data base of currently 134 acute care hospitals. The resistance rates of the invasive indicator pathogens, hence, constitute a reliably measured substitute value for the prevalence of the resistance of the respective pathogens in relation to the antibiotic substances selected. In 2011, as far as human-medicine antimicrobial susceptibility testing methodology is concerned, Austrian microbiology laboratories switched from CLSI to EUCAST, a process that was successfully completed in 2012. The Austrian results for 2016 may be summarised as follows:

In the case of *S. pneumoniae*, there has been existent a stable and very positive situation for penicillin for years. According to EUCAST threshold values that differ due to clinical indication and intended forms of administration, isolates having a MHK of > 2 mg/l would be regarded as "highly resistant". In 2016 not one of such isolates was detected in Austria. Based on the strict Meningitis threshold values, only 5 invasive isolates proved to be resistant to penicillin in the year 2016 (1.1%). The situation of the resistance rate in regard to macrolides in comparison to 2015 remained more or less unchanged (8.7% to 8.8%), while being reduced by half over a comparative period of five years (17.7% in the year 2012). The three most frequent serotypes of invasive isolates in the year 2016 were 3, 19A and 22F. With children younger ≤ 2 years, type 19A was the most frequent one. In the age group of 60+, the most frequent serotypes were 3, 19A und 22F.

The **MRSA rate** has shown a downward trend since 2013, being as low as 7.1% in 2016. No reduced sensitivity to (resistance against) vancomycin was detected and confirmed in the year 2016 in any invasive *S. aureus* isolate.

In the case of *E. coli*, the resistance rate in regard to aminopenicillins (50%) has remained essentially stable since 2010. In comparison to 2015, the resistance rate in regard to fluoroquinolones was slightly reduced (from 20.0% to 19.8%), while the resistance rates in regard to 3rd generation cephalosporins (from 9.7% to 10%) and aminoglycosides (from 7% to 7.8%), respectively, have increased.

With **enterococci**, essentially no change of the resistance rates in regard to aminopenicillin and aminoglycosides has been detected in comparison to the years before. The **VRE rate** was 0.3% with *E. faecalis* and 4.3% with *E. faecium*.

11
In the case of *K. pneumoniae*, the resistance rates in regard to fluoroquinolones and 3rd generation cephalosporins showed a notably declining trend up to 2014, with that for aminoglycosides remaining essentially stable. In comparison to 2015, the resistance rates with 3rd generation cephalosporins have increased (from 8.4% to 9.6%), while those with fluoroquinolones have decreased (from 11.7% to 9.8%). The resistance rate in regard to aminoglycosides remained stable at 4.8%.

Carbapenemase producing isolates: In 2016 one invasive *E. coli* isolate strain and 11 invasive strains of *K. pneumoniae* were documented.

With *P. aeruginosa*, a decrease of the resistance rates in connection with the following substance classes was recorded in 2016: fluoroquinolones 7.2% (-3.1%) and aminoglycosides 6.1% (-0.2%). The resistance rates in regard to carbapenem increased to 12.9% (+0.7%), those in regard to piperacillin/tazobactam to 13.8% (+1.9%) and those in regard to ceftazidime to 11.3% (+1.4%).

On the basis of only 81 isolates in total, *Acinetobacter sp.* showed resistance rates in regard to aminoglycosides of 16.1%, in regard to fluoroquinolones of 16.1% and in regard to carbapenems of 12.4%, respectively.

In total, there is still a positive situation detectable in Austria, especially with nosocomial gram-positive pathogens like MRSA and VRE. Compared to other European countries, the resistance rates are low. A rather problematic field, however, is still being represented by the gram-negative pathogens.

The full report can be found in the long version of the AURES 2016 from page 19 to page 92 ([AURES 2016](#)).

Project report CARBA-Net

Data from the human sector

An activity by the National Reference Centre for nosocomial infections and antibiotic resistance

Author / contact person

OA Dr. Rainer Hartl
Ordensklinikum Linz GmbH Elisabethinen
Institute of Hygiene, Microbiology and Tropical Medicine
National Reference Centre for nosocomial infections and antibiotic resistance, Linz

Increasing numbers of carbapenemase producing gram negative bacteria are reported worldwide [1]. As a consequence, the surveillance project CARBA-Net was initiated in April 2015. In 2016 in 102 out of 163 *Enterobacteriaceae* strains referred to the Austrian National Reference Laboratory due to decreased carbapenem susceptibility, a carbapenemase gene was confirmed. The enzymes could be assigned to Ambler classes A (*bla*KPC [*n=*14] and *bla*IMI [*n=*1]), B (*bla*VIM [*n=*40] and *bla*NDM [*n=*15]) and D (*bla*OXA-48 like [*n=*32]). With regard to other gramnegative bacilli, 40 out of 99 suspected *Pseudomonas aeruginosa* isolates were positive for a metallo-beta-lactamase (*bla*VIM [*n=*35], *bla*DIM [*n=*2], *bla*IMP [*n=*2] and *bla*NDM [*n=*1]) and 18 *Acinetobacter baumannii* isolates gave a positive result for *bla*OXA-51 in combination with either *bla*OXA-23, *bla*OXA-24 or *bla*OXA-23 with *bla*NDM.
Resistance report for selected non-invasive pathogens

Data from the human sector

An activity of the working group resistance reporting

Author / contact person
PD Dr. Markus Hell
MEDILAB OG, Dep. Clinical Microbiology and Hygiene,
Academic Teaching Laboratories, Paracelsus Medical University, Salzburg

The collected data of twelve centers/laboratories from all over Austria are highly reliable and represent the prevalence of antibiotic resistance of selected so-called “non-invasive isolates” from 2012 to 2016. The aim of this annual survey is also to highlight the difference in resistance rates comparing “hospital derived isolates” with “community-derived isolates”, gained from outpatient-clinics. We report resistance-rates for the following “indicator-organisms” for 2016:

1. **Group A streptococci** (n=2,602) from the lower and upper respiratory tract demonstrated lower resistance rates for macrolides compared to **pneumococci** (n=1,355) in both out- and in-patient settings (6.0% / 8.4% versus 13.8% / 13.8%). Pooled resistance rate for macrolides in pneumococci is above resistance of invasive pneumococci of EARS-net AT data: 13.8 % versus 8.8%. Resistance rates in H. influenzae (n=2,603) in hospitals and the community are as follows: aminopenicillins 27.3% and 25.5%; aminopen. + betalactamaseinhibitor 9.0% and 6.8%, fluoroquinolones 0.6% and 0.5% respectively.

2. **ESBL-producing E. coli** (n=2,985) from urine samples remain stable with 7.6% over the last two years and do not differ whether gained from samples in (8.2%) or outside (6.9%) the hospital. Fluoroquinolones proved to have high resistance rates in all E. coli isolates (16.2%, n=44,986) and very high in ESBL-producing E. coli (73.5%) and sulfamethoxazol/trimethoprim demonstrated similar results (23.3% vs 63.0%).

3. **Klebsiella pneumoniae** (n=9,511) from urine samples showed a resistance rate against 3rd generation cephalosporins of 7.7% and a carbapenem resistance of 0.7% in 2016.

4. **Staphylococcus aureus/MRSA** (n=23,030/1,330): hospital associated MRSA rate was 8.2%, in out-patients the MRSA rate was 4.8%. There were no isolates identified resistant to linezolid or vancomycin but 0.5% resistance against Dapatomycin in MSSA.

5. **Pseudomonas aeruginosa**: Stable high resistance rates of all selected substances for isolates from lower respiratory tract (as a surrogate for isolates from the ICU; n=853): Carbapenems showed a rate of 17.2% and Ceftazidim 19.5%. Ear-derived isolates (as a surrogate for external otitis; n=1,349) showed a stable rate of 3.7% for aminoglycosides.

The full report can be found in the long version of the AURES 2016 from page 101 to page 119 (AURES 2016).
Resistance report *Neisseria meningitidis*

An activity of the National Reference Centre for Meningococci

Author / contact person
Mag.ª Claudia Mikula
Austrian Agency for Health and Food Safety
Institut for Medical Mikrobiology and Hygiene Graz
Centre for Foodborne Infectious Diseases

The National Reference Centre for Meningococci received 74 culturable isolates in 2016. Of these, 22 isolates were from invasive infections. Thirty-five of the 74 isolates were polyagglutinable (PA) (47.3 %), 25 serogroup B (33.8 %), 5 serogroup C (6.8 %), 5 serogroup Y (6.8 %) and 4 were serogroup W (5.4 %).

According to EUCAST (v. 6.0), 29 isolates showed reduced susceptibility to penicillin. Ten of the 29 intermediate strains were invasive isolates. Thirteen isolates, all non-invasive, were resistant to penicillin (MHK > 0.25 mg/L). One strain was resistant to rifampicin. All of the strains were in vitro susceptible to ciprofloxacin und ceftriaxone.

The full report can be found in the long version of the AURES 2016 from page 120 to page 126 ([AURES 2016](#)).

Resistance report *Campylobacter*

Data from the human and food sector

An activity of the National Reference Centre for *Campylobacter*/the National Reference Laboratory for *Campylobacter* from food and feed products

Author / contact person
Dr. in Sandra Köberl-Jelovcan
Austrian Agency for Health and Food Safety
Institute for Medical Microbiology and Hygiene/Centre for Foodborne infectious diseases
Department of reference centres and reference laboratories

In 2016, a total of 7,086 cases of campylobacteriosis were reported in Austria (data source: statistics for notifiable infectious diseases, final annual report 2016). A high to very high tetracycline and fluoroquinolone resistance rate, respectively, were found in *C. jejuni* and *C. coli* isolates of human and food (chicken) origin. In contrast to previous years no further increase in fluoroquinolone resistance in *Campylobacter* from human isolates was seen, fluoroquinolone resistance was found to be 72.5% in *C. jejuni* and 81.4% in *C. coli*. Resistance towards erythromycin remained low and was primarily recorded in *C. coli*.

The full report can be found in the long version of the AURES 2016 from page 127 to page 138 ([AURES 2016](#)).
Resistance report *Salmonella*

Data from the human, food and veterinary sector

An activity of the National Reference Centre for *Salmonella*

Author / contact person

Dr. Christian Kornschober
Austrian Agency for Health and Food Safety
Institute of Medical Microbiology and Hygiene

In 2016, the number of primary human isolates sent to the National Reference Centre for *Salmonella* decreased by 9.2% as compared to 2015.

Due to the decline of fully susceptible *S. Enteritidis* isolates there has been a shift towards higher resistance rates in recent years in Austria. The highest resistance rates are found against ampicillin, sulphonamides and tetracycline (resistance pattern typical for multiresistant *S. Typhimurium* strains) and against nalidixic acid (low-level ciprofloxacin resistance), which is typical for *S. Infantis*, and several *S. Enteritidis* phage-types.

High level resistances against ciprofloxacin and third generation cephalosporins (cefotaxime, ceftazidime) were still extremely rare. The resistance rates among non-human salmonella isolates are partly considerably higher than those among human strains.

The full report can be found in the long version of the AURES 2016 from page 139 to page 153 (*AURES 2016*).

Resistance report *Shigella*

Data from the human sector

An activity of the National Reference Centre for *Shigella*

Author / contact person

Mag. Dr. Ingeborg Lederer
Austrian Agency for Health and Food Safety
Institute for Medical Microbiology and Hygiene/Centre for foodborne infectious diseases
Department reference centres and reference laboratories

In Austria 62 cases of shigellosis were reported to the health authorities in 2016. In the same year, a total of 58 *Shigella* isolates were received by the National Reference Centre for *Shigella*. The incidence rate was 0.7 / 100,000 inhabitants; in 2015 an incidence of 1.1 / 100,000 inhabitants was registered. The predominant species was *Shigella sonnei* accounting for 75.9% of all isolates. We detected resistance against ciprofloxacin in 13 strains and resistance to nalidixic acid in 24 isolates. 10 *Shigella* strains were ESBL positive (17.24%).

The full report can be found in the long version of the AURES 2016 from page 154 to page 162 (*AURES 2016*).
Resistence report Yersinia

Data from the human sector
An activity of the National Reference Centre for Yersinia

Author / contact person
Dr. in Shiva Pekard-Amenitsch
Austrian Agency for Health and Food Safety
Institute for Medical Microbiology and Hygiene Graz

In 2016, the Austrian National Reference Centre for Yersinia examined 210 isolates of Yersinia spp., of which 153 were of human origin, and 57 from food samples. Of the 153 human isolates, 87 were pathogenic, 66 were non-pathogenic isolates. Among the pathogenic isolates 84 belonged to Yersinia enterocolitica and 3 strains to Y. pseudotuberculosis. In 2016, the incidence rate for cases confirmed by the National Reference Centre was 1.0 per 100 000 inhabitants. In vitro susceptibility testing revealed no abnormalities – six Y. enterocolitica isolates showed resistance to amoxicillin/clavulanic acid, two against co-trimoxazol, two to tetracycline and one to gentamicin.

The full report can be found in the long version of the AURES 2016 from page 163 to page 167 (AURES 2016).

Resistence report Tuberculosis 2016

Data from the human sector
An activity of the National Reference Centre for tuberculosis

Authors / contact persons
PD in Dr. in Daniela Schmid, MSc
PD Mag. Dr. Alexander Indra
Agency for Health and Food Safety
Institute for Medical Microbiology and Hygiene Vienna

In 2016, a total of 634 cases of tuberculosis (489 confirmed, 56 probable and 89 possible cases) were notified in Austria, which corresponds to an incidence of 7.23/100,000 population. Men were two times more affected than women (9.8/100,000 versus 4.8/100,000 population). A total of 203 cases (32%) where found among native Austrians, 165 cases (26.1%) among Austrian residents born in the WHO region Europe and 266 cases (42%) among residents born outside of the WHO region Europe. The decreasing trend in the tuberculosis incidence among Austrian natives between 2008 and 2016 continued (annual incidence reduction: 5 cases/1 million residents). In 2016, 14 cases of MDR-tuberculosis (including two cases of XDR-tuberculosis) were confirmed among non-native Austrians. Two cases of MDR-tuberculosis were confirmed among Austrian natives.

The full report can be found in the long version of the AURES 2016 from page 168 to page 180 (AURES 2016).
Resistance report *Neisseria gonorrhoeae*

Data from the human sector
An activity of the National Reference Centre for gonococcal

Authors / contact persons
Dr. in Angelika Eigentler
Microbiology Laboratory Möst Innsbruck

Dr. in Steliana Huhulescu
Dr. in Sonja Hirk
Agency for Health and Food Safety
Institute for Medical Microbiology and Hygiene Vienna

Due to the rapid emergence of antimicrobial resistance mechanisms in *Neisseria gonorrhoeae* the continuous surveillance of antimicrobial resistance data of *Neisseria gonorrhoeae* is crucial for the control and management of gonorrhea.

In 2016 the Institute for Medical Microbiology and Hygiene of AGES (IMED-WIEN) was mandated in collaboration with the Microbiology Laboratory Möst Innsbruck for the tasks of a national reference laboratory for *Neisseria gonorrhoeae*.

In 2016, data of 187 *Neisseria gonorrhoeae* isolates were evaluated for their antimicrobial susceptibility. The isolates were provided by 12 Austrian laboratories via a sentinel-system. All isolates showed sensitivity to Ceftriaxone. Resistance rates for Cefixime, Azithromycin and Ciprofloxacin were 4.3%, 4.8% and 64.2% respectively. A total of 19.3% of isolates produced penicillinase (PPNG).

The full report can be found in the long version of the AURES 2016 from page 181 to page 188 (AURES 2016).

Resistance report Yeasts

Data from the human sector
An activity of the National Reference Centre for Yeasts

Author / contact person
Univ.-Prof. in Dr. in Birgit Willinger
Medical University of Vienna
Clinical Department of Microbiology
Clinical Institute of Laboratory Medicine

Up to now resistance in Candida doesn’t seem to be a real threat. In general, the situation in Austria is in concordance with globally reported data. In total, 19 resistant strains were found. Although a higher number of candidemia has been observed, the number of resistant strains is below the numbers of the previous year (33 resistant isolates). Only a small number of strains was resistant against azoles.
Echinocandin resistance has been a rare phenomenon. Only a minor number has been identified as resistant in 2016. Only a few resistant strains were observed, one isolate of *C. parapsilosis* and two *C. glabrata* isolates were resistant against anidulafungin, four *C. albicans* isolates were resistant against micafungin. Thus, the resistance rate is about the same as in 2015.

The full report can be found in the long version of the AURES 2016 from page 189 to page 211 ([AURES 2016](#)).

Resistance report Moulds

Data from the human sector

An activity of the National Reference Centre for Moulds

Author / contact person

Univ.-Prof. Dr. Cornelia Lass-Flörl
Medical University of Innsbruck
Department of Hygiene and Clinical Microbiology

168 moulds out of sterile body sites and bronchoalveolar lavages were collected from the Medical University Vienna, Department of Laboratory Medicine, the Medical University Innsbruck, Division of Hygiene and Medical Microbiology, the Medical University of Graz and the analyse BioLab GmbH of Linz in 2016. *Aspergillus species*, which were isolated in 70% (117/168), are still the leading causative agents of invasive mould diseases; thereof 74% (87/117) belong to the *Aspergillus fumigatus* complex.

Except one as intermediate susceptible valued *A. clavatus*-isolate, all the tested *Aspergillus* isolates were susceptible to the recommended first line treatment of voriconazole. Apart from *Aspergillus terreus* isolates, which exhibit intrinsic resistance to amphotericin B, 6% (7/117) of *Aspergillus* isolates showed elevated minimal inhibitory concentrations (MIC > 1 mg/l) against amphotericin B (3 *A. fumigatus*-, 2 *A. ochraceus*-, 1 *A. xenophilius*- and 1 *A. versicolor*-isolate); 7% (8/117) represented elevated MICs (> 0.125 mg/l) against posaconazole (4 *A. fumigatus*-, 2 *A. niger*-, 1 *A. ochraceus*- and 1 *A. clavatus*-isolate) and 26% (8/31) against itraconazole (5 *A. fumigatus*-, 2 *A. niger*- and 1 *A. clavatus*-isolate), respectively. For the first time some of the isolates were tested against isavuconazole, which received marketing authorization in Europe for “the treatment of adult patients with invasive aspergillosis and for the treatment of adult patients with mucormycosis for whom amphotericin B is inappropriate”. The MICs of the 11 *Aspergillus* isolates tested (10 *A. fumigatus*- and 1 *A. clavatus*-isolate) were ≤ 0.5 mg/l, which could be valued as susceptible.

Among the non-*aspergillus* isolates elevated MICs above 1 mg/l for amphotericin B, above 0.125 mg/l for posaconazole and above 1 mg/l for voriconazole were detected in 43% (22/51), 69% (35/51) and 26% (11/42), respectively. The two *Mucorales species* (1 *Rhizopus sp. und 1 *Rhizomucor pusillus*-isolate) tested against isavuconazole showed MICs ≤ 1 mg/l. It must be pointed out that clinical breakpoints are only available for *Aspergillus species* and interpretation of susceptibility testing of non aspergillus moulds is based on *Aspergillus*-specific data.

The full report can be found in the long version of the AURES 2016 from page 212 to page 219 ([AURES 2016](#)).
Resistance report of the Austrian HIV Cohort Study
Part 1: Transmission of drug-resistant HIV in Austria

An activity of the association "Austrian HIV Cohort Study “

Authors / contact persons
Mag. Stefanie Strickner
MMag. Michaela Rappold
Univ.-Prof. Dr. Robert Zangerle
University Clinic of Dermatology and Venereology

Prevalence of Transmitted Drug Resistance is Stabilising at a Low Rate in Austria

Strickner S.¹, Rappold M.¹, Rieger A.², Steuer A.³, Sarcletti M.⁴, Geit M.⁵, Haas B.⁶, Taylor N.⁷, Kanatschnig M.⁸, Zoufaly A.⁹, Zangerle R.⁴, for the AHIVCOS Study Group

Prevalence of Transmitted Drug Resistance is Stabilising at a Low Rate in Austria

Objective: To determine the prevalence of transmitted drug resistance (TDR), temporal trends in resistance, and predictors for TDR.

Method: Newly diagnosed patients from 2003 to December 2016 from eight centres were analyzed. Mutations were judged as resistant according to Bennett et al. (WHO 2009 mutation list). For patients with acute or recent infection the year of infection was obtained by the date of primary HIV infection or the median point in time between negative and positive HIV test. For patients with chronic infection the rate of resistance was plotted against the year of the HIV diagnosis.

Results: Overall 2823 of 4537 patients had an amplifiable resistance test. The overall prevalence of TDR was 7.9% (222 of 2823 patients; 95% CI: 6.9%-8.9%). The prevalence of NRTI resistance was 3.3% (2.7%-4.0%), the prevalence of NNRTI resistance was 3.1% (2.5%-3.8%), and the prevalence of PI resistance was 2.0% (1.6%-2.6%). The relative risk of TDR in men who have sex with men compared to heterosexual contacts was 1.5 (95% CI: 1.2-2.0). The prevalence rate of TDR in the 890 patients with acute/recent infection was 8.7% (58 of 667 patients; 6.8%-11.1%). One patient (0.2%) showed TDR against 3 drug classes (K70R; K103N; L90M). The prevalence rate of TDR in the 3624 patients with chronic infection was 7.6% (164 of 2156 patients; 6.6%-8.8%).

Conclusions: The prevalence of TDR among newly diagnosed patients was found to be stabilizing. No difficult to treat cases of TDR has been observed.

The full report can be found in the long version of the AURES 2016 from page 220 to page 230 (AURES 2016).

¹ Austrian HIV Cohort Study, Innsbruck, Austria
² Medical University Vienna, Vienna, Austria
³ SMZ Baumgartner Höhe, Otto-Wagner-Hospital, Vienna, Austria
⁴ Medical University Innsbruck, Innsbruck, Austria
⁵ General Hospital Linz, Linz, Austria
⁶ LKH Graz West, Graz, Austria
⁷ Paracelsus Medical University Salzburg, Salzburg, Austria
⁸ LKH Klagenfurt, Klagenfurt, Austria
⁹ Kaiser-Franz-Josef-Hospital, Vienna, Austria
Resistance report of the Austrian HIV Cohort Study
Part 2: Resistance development under antiretroviral therapy

An activity of the association "Austrian HIV Cohort Study “

Authors / contact persons
Mag. Stefanie Strickner
MMag. Michaela Rappold
Univ.-Prof. Dr. Robert Zangerle
University Clinic of Dermatology and Venereology

Prevalence of Development of Drug Resistance in HIV infected patients in Austria

Objective: To determine the prevalence of development of drug resistance, predictors and temporal trends in resistance.

Method: Patients currently in care in one of eight centres who have ever been on antiretroviral therapy (ART) were analyzed. Mutations were judged as resistant according to “2017 Update of the Drug Resistance Mutations in HIV-1” from the International Antiviral-Society-USA (http://iasusa.org/resistance_mutations/mutations_figures.pdf).

Results: Overall 4487 patients have ever received ART, 4483 of them currently. 1270 had a resistance test after ART (28.3%). The overall prevalence of development of drug resistance was 74.6% (948 of 1270 patients), the prevalence of NRTI resistance was 36.9%, the prevalence of NNRTI resistance was 28.0%, and the prevalence of PI resistance was 68.0%. The prevalence of 3-class-resistance was 18.7% (237 of 1270 patients). The risk factors for developing a 3-class-resistance were a CD4 nadir <50 (OR=3.6; 95% CI: 2.4-5.3), a CD4 nadir between 50 and 200 (OR=2.4; 95% CI: 1.7-3.5) and initial therapy before 1997 (OR=25.0; 95% CI: 16.9-37.2) as well as from 1997 to 2003 (OR=7.6; 95% CI: 5.0-11.4) and an age at ART-start <30 (OR=2.1; 95% CI: 1.1-3.9). The risk to develop a 3-class-resistance was lower in patients with a low viral load (for <400 copies/ml OR=0.2; 95% CI: 0.1-0.4) and in male (OR=0.5; 95% CI: 0.3-0.9) and female (OR=0.5; 95% CI: 0.2-0.96) patients infected through intravenous drug use.

Conclusions: The overall prevalence of development of drug resistance is at a rather high level, while the prevalence of 3-class-resistance was found to be stabilizing at a low level. The risk for developing resistance is small in those who initiated therapy in recent years.

The full report can be found in the long version of the AURES 2016 from page 231 to page 249 (AURES 2016).

1. Austrian HIV Cohort Study, Innsbruck, Austria
2. Medical University Vienna, Vienna, Austria
3. SMZ Baumgartner Höhe, Otto-Wagner-Hospital, Vienna, Austria
4. Medical University Innsbruck, Innsbruck, Austria
5. General Hospital Linz, Linz, Austria
6. LKH Graz West, Graz, Austria
7. Paracelsus Medical University Salzburg, Salzburg, Austria
8. LKH Klagenfurt, Klagenfurt, Austria
9. Kaiser-Franz-Josef-Hospital, Vienna, Austria
Report of antibiotic resistance monitoring according to the commission implementing decision 2013/652/EU in Austria, 2016

Authors / contact persons
Dr. med. vet. Peter Much
Hao Sun, Bakk. rer. soc. oec.
Austrian Agency for Health and Food Safety
Department of Statistics (STA)
Integrative risk assessment, data and statistics (DSR)

In accordance with EU-Directive 2003/99/EC, the Federal Ministry of Health and Women’s Affairs in cooperation with the Austrian Agency for Health and Food Safety (AGES) and officially designated veterinary practitioners conducted annual programs in order to monitor the prevalence and the antimicrobial resistance of certain zoonotic and indicator bacteria in different Austrian farm animal species. Since 2014, based on the Commission Implementing Decision No. 2013/652/EU the member states have to monitor and report antimicrobial resistance in zoonotic and commensal bacteria isolated from samples of food producing animals and from food. In 2016, slaughter batches of broilers and turkeys were analyzed for Campylobacter (C.) jejuni, commensal E. coli, β-lactamase and carbapenemase producing E. coli, as well as batches of fresh chicken meat sampled at retail for β-lactamase and carbapenemase producing E. coli. Additionally, all Salmonella isolated from flocks of laying hens, broilers and turkeys in the course of the Salmonella control program but also Salmonella from carcasses both broilers and turkeys obtained by food business operators at slaughterhouses in accordance with process hygiene criteria had to be tested within the Decision 2013/652/EU. In the respective national reference laboratories the obtained isolates were specified or typed and tested for their antimicrobial susceptibility.

In Austria, randomized, representative samples of slaughtered broiler flocks and turkey flocks, caecum content of ten animals per flock pooled were investigated for C. jejuni, indicator E. coli and β-lactamase and carbapenemase producing E. coli. One C. jejuni isolate each from 174 broiler flocks and 55 turkey flocks, obtained from 491 broiler flocks and 199 turkey flocks was susceptibility tested. Twenty point one percent of C. jejuni isolates from chicken and 10.9% from turkey showed susceptibility to all six antimicrobials tested. Isolates from both animal species showed similar resistance patterns with very high to extremely high resistance rates to quinolones and tetracyclines. Higher resistance rates were found in isolates from broiler compared to turkeys towards quinolones (ciprofloxacin: 77.6% versus 74.5% and nalidixic acid: 73.0% versus 63.6%); towards tetracycline turkey isolates presented higher resistance rates (54.5% versus 50.0%). Since 2004, a significant increasing tendency in resistance can be found in isolates from broilers to ciprofloxacin and nalidixic acid, and since 2012 significant tendency was detected towards tetracycline. In 2014, turkey isolates were tested for the first time; therefore longer term tendency cannot be analyzed.

Commensal E. coli from 170 broiler flocks and 154 turkey flocks were susceptibility tested against 14 antimicrobial substances. No microbiological resistance to all tested antimicrobials could be found in 33.5% of broiler isolates and 42.2% of turkey isolates; that indicates an improvement of the resistance situation in Austria compared to 2014 (21% of broiler isolates and 30% of turkey isolate were fully susceptible). Isolates from chicken compared with turkey showed higher resistance rates to ciprofloxacin (47.1% versus 22.7%), nalidixic acid (45.3% versus 16.9%),
sulfamethoxazole (37.1% versus 18.2%), and trimethoprim (29.4% versus 11.0%), although higher resistance rates to tetracycline (40.9% versus 22.4%) were detected in turkey isolates. Resistance rates to the other antimicrobials tested were similar in isolates from both poultry species, e. g. to ampicillin (32.9% versus 31.8%) or chloramphenicol (4.7% versus 8.4%). Since 2010, resistance rates to quinolones in chicken isolates significantly decreased; since 2004 a significant increasing tendency of resistance towards ampicillin, sulfonamides and trimethoprim has been observed but towards tetracycline a significant decreasing tendency has been determined. In 2014, turkey isolates were analyzed for the first time.

β-lactamase producing *E. coli* were found following selective enrichment in 52.3% of 306 tested broiler flocks, in 63.7% of 300 chicken meat samples and 43.7% of 183 turkey flocks. Among the β-lactamase producing *E. coli*, the ones with extended spectrum (ESBL) were most commonly identified (51% of all positive samples each in broiler flocks and in chicken meat, 74% in turkey flocks), followed by plasmid coded AmpC (pAmpC) β-lactamase producing *E. coli* (43% and 46% of isolates from broilers and chicken meat and 20% of isolates from turkeys). AmpC-, ESBL+AmpC-β-lactamase producing *E. coli* or other phenotypes (putative non ESBL/AmpC producers) are distributed among the other isolates.

Carbapenemase producing *E. coli* could not be detected following selective enrichment in any broiler flock, chicken meat sample and turkey flock.

All commercially produced flocks of layers, broilers, and turkeys are controlled for salmonella. For susceptibility testing, 46 *Salmonella* isolates from layers, 179 from broilers, and eleven from turkeys were available. At slaughterhouses 36 *Salmonella* isolates were detected on broiler carcasses but none on turkey carcasses. Of all isolates tested, 84.8% *Salmonella* isolates from layers, 45.3% from broilers, 54.5% from turkeys and 52.8% from broiler carcasses were fully susceptible against all 14 antimicrobial substances tested. Compared to 2014, the resistance situation improved in isolates of all populations tested. The detection of resistance in all *Salmonella* isolates from poultry corresponds with the occurrence of certain serovars e. g. *S. Infantis*, *S. Typhimurium* including the monophasic variant, *S. Mbandaka*, *S. Saintpaul*, and *S. Stanley* and the decrease of fully sensitive serovars like most *S. Enteritidis* and *S. Montevideo*. Significant tendencies in resistance rates of *Salmonella* spp. are difficult to determine because resistances are often linked to certain serovars.

The full report can be found in the long version of the AURES 2016 from page 250 to page 346 (AURES 2016).

European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)

An activity of AGES – Agency for Health and Food Safety
Department data, statistics and risk assessment

Authors /contact persons
Univ.-Doz. Dr. Klemens Fuchs
Mag. Reinhard Fuchs
Agency for Health and Food Safety
Integrative Risk assessment, data and statistics
In 2016, the total sales of active ingredients in Austria for livestock equal 44.41 tons (t), a decrease of 9.0 % compared to 2015. The largest amount of veterinary antimicrobials was for systemic use (41.52 t, 94 %). Within the group for systemic use more than half were tetracyclines, followed by penicillins with extended spectrum, sulfonamides and macrolides.

Oral preparations – this group includes oral powders, oral solutions, tablets and oral pastes – are with 35.55 tons (80 %) still the most used application form. Parenteral preparations are on second place with 5.69 tons (12.8 %), followed by premix with 1.90 tons (4.3 %).

The full report can be found in the long version of the AURES 2016 from page 347 to page 353 (AURES 2016).

Antimicrobial Consumption in Human Medicine in Austria

National Reference Centre for Nosocomial Infections and Antibiotic Resistance and AGES – Agency for Health and Food Safety

Authors / contact persons
Prim. a Univ.-Prof. in Dr. in Petra Apfalter
Gerhard Fluch
Ordensklinikum Linz GmbH Elisabethinen
Institute of Hygiene, Microbiology and Tropical Medicine
National Reference Centre for Nosocomial Infections and Antibiotic Resistance, Linz

Stefanie Kirchner, BSc, MPH
Univ.-Prof. Dr. Franz Allerberger
Agency for Health and Food Safety
Institute for Medical Microbiology and Hygiene Vienna

Apart from the consumption data provided by the Hauptverband der österreichischen Sozialversicherungsträger (The Organisation of Austrian Social Security), in the present AURES, there were for the first time also assessed the antibiotics consumption data provided by the IMS Health Marktforschung GmbH. The results of both sources were then comprehensively evaluated and depicted in regard to sectors, substances, reference figures and seasonal fluctuations.

The systemic overall consumption of antibiotics in Austria amounted in the year 2016 in the field of human medicine, hence, to 71.602t active ingredients, with 67% thereof accounting for registered practitioners and 33% for the hospital sector.

In retrospect, and in view of the data of 2010, overall consumption has increased from 69.158t to 71.602t active ingredients, wherein this increase mainly took place in the hospital sector (by 15.5%, from 20.5t in the year 2010 to 23.5t in the year 2016). Consumption with registered practitioners, however, has remained essentially the same within the same period.

Consumption density in Austria in 2016 was 20.58 DDD/1,000 inhabitants per day, thus having decreased since 2010 by 6.45% (22 DDD/1,000 inhabitants per day) or, in comparison with 2015, the prescriptions per 10,000 inhabitants per day have decreased from 17.3 to 16.5, respectively.

The major part of overall consumption with 53% for β-lactam antibiotics, penicillins (J01C), hence, shows a tendency of being stable towards slightly increasing (2010: 10.73 DDD/1,000 inhabitants
per day; 2016: 10.91 DDD/1,000 inhabitants per day). For other antibiotics of the ATC3 group J01, there has been observed a reduction of consumption. The dominance of β-lactam antibiotics, penicillins (J01C), is also being reflected in the sector of registered practitioners (2016: 8.98 DDD/1,000 inhabitants per day), followed by the group of macrolides, lincosamides and streptogramins (J01F) (2016: 3.15 DDD/1,000 inhabitants per day). In the hospital sector, the β-lactam antibiotics, penicillins (J01C), also show the highest consumption (J01C) (2016: 33.39 DDD/100 occupancies per year), followed by other β-lactam antibiotics, cephalosporines (2016: 11.60 DDD/100 occupancies per year).

An analysis of the monthly consumption dates of the year 2016 shows a fluctuation in correlation with the various seasons. Significant fluctuation ranges were shown with β-lactam antibiotics, penicillins (J01C), other β-lactam antibiotics, cephalosporines (J01D), and the group of the macrolides, lincosamides and streptogramins (J01F) as well as with quinolones (J01M). In the year 2016, the largest fluctuation range of overall consumption was observed with 65.5% for the macrolides, lincosamides and streptogramins (J01F), followed by β-lactam antibiotics, penicillins (J01C) with 31.2%, other β-lactam antibiotics, cephalosporines (J01D) with 23.3% and quinolones (J01M) amounting to 18.9%.

The results of the season fluctuations in the sector of registered practitioners were similar to those of overall consumption. The largest fluctuation range was to be assigned to the group of the macrolides, lincosamides and streptogramins (J01F) (70%), followed by β-lactam antibiotics, penicillins (J01C) with 37.4%, other β-lactam antibiotics, cephalosporines (J01D) with 35.3% and quinolones (J01M) with 22.2%. In the hospital sector, there were hardly observed any seasonal fluctuations, with the exception of the group of the macrolides, lincosamides and streptogramins (J01F) with 10.9%.

The analysis of the carbapenems showed in 2016 a hospital-related consumption of 2.47 DDD/100 occupancies per year, with meropenem representing the most-used substance (only 0.47% of overall consumption may be assigned to the sector of registered practitioners).

Finally, the focus was laid on the consumption of “reserve antibiotics” in the hospital sector. For the active ingredients, which are used for the gram-positive types, the consumption of linezolid increased during the period of the study, while the consumption of vancomycin was decreasing. In the gram-negative area, there was mainly visible an increase of consumption of meropenem and cefepim, while the consumption of the other active ingredients has been decreasing (imipenem/cilastatin, doripenem, ertapenem, cefpirom).

The full report can be found in the long version of the AURES 2015 from page 354 to page 381 (AURES 2016).
Fire blight is caused by the plant pathogenic bacterium *Erwinia amylovora*. The use of streptomycin as a plant protection agent constitutes one part of the Austrian strategy to combat this plant disease in fruit growing. In order to determine the prevalence of streptomycin resistant *E. amylovora* strains at an early stage, surveillance activities have been carried out since 2006. Up to date, all *E. amylovora* isolates from treated orchards have been tested as susceptible to streptomycin. The comparison of the distribution of minimum inhibitory concentrations between wild-type strains and test-strains did not reveal any shifting of the sensitivity range of the tested isolates.

The full report can be found in the long version of the AURES 2016 from page 382 to page 389 (AURES 2016).
OVERVIEW CONTRIBUTIONS, AUTHORS AND REVIEWERS

Table 2: Contribution summary, with authors and reviewers

<table>
<thead>
<tr>
<th>Contributions</th>
<th>Authors / Co-Authors</th>
<th>Contact persons</th>
<th>Reviewers</th>
</tr>
</thead>
</table>
| **Antimicrobial resistance in select bacterial invasive infectious pathogens** | Prim. Univ.-Prof. Dr. Petra Apfalter
Gerhard Fluch
Ordensklinikum Linz GmbH Elisabethinen
Institute of Hygiene, Microbiology and Tropical Medicine
National Reference Centre for Nosocomial Infections and Antibiotic Resistance
Fadingerstraße 1
4020 Linz
E-Mail: petra.apfalter@analyse.eu
E-Mail: gerhard.fluch@ordensklinikum.at | | MMag. Sigrid Metz-Gercek
Ordensklinikum Linz GmbH Elisabethinen
Tumorcentre gespag-elsabethinen
Fadingerstraße 1
4020 Linz
PD Dr. Markus Hell
MEDILAB OG, Dep. Clinical Microbiology and Hygiene, Academic Teaching Laboratories, Paracelsus Medical University, Salzburg
Strubergasse 20
5020 Salzburg |
| **Project report CARBA-Net** | OA Dr. Rainer Hartl
Ordensklinikum Linz GmbH Elisabethinen
Institute of Hygiene, Microbiology and Tropical Medicine
National Reference Centre for Nosocomial Infections and Antibiotic Resistance
Fadingerstraße 1
4020 Linz
E-Mail: rainer.hartl@analyse.eu | | Prim. Univ.-Prof. Dr. Petra Apfalter
Ordensklinikum Linz GmbH Elisabethinen
Institute of Hygiene, Microbiology and Tropical Medicine
National Reference Centre for Nosocomial Infections and Antibiotic Resistance
Fadingerstraße 1
4020 Linz |
| **Resistance report for select non-invasive pathogens** | PD Dr. Markus Hell
MEDILAB OG, Dep. Clinical Microbiology and Hygiene, Academic Teaching Laboratories, Paracelsus Medical University, Salzburg
Strubergasse 20
5020 Salzburg
E-Mail: markus.hell@medilab.at | | Prim. Univ.-Prof. Dr. Petra Apfalter
Ordensklinikum Linz GmbH Elisabethinen
Institute of Hygiene, Microbiology and Tropical Medicine
National Reference Centre for Nosocomial Infections and Antibiotic Resistance
Fadingerstraße 1
4020 Linz |
<table>
<thead>
<tr>
<th>Contributions</th>
<th>Authors / Co-Authors</th>
<th>Contact persons</th>
<th>Reviewers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance report Neisseria meningitidis</td>
<td>Mag. a Claudia Mikula</td>
<td>Austrian Agency for Health and Food Safety Institute of Medical Microbiology and Hygiene Graz Centre for Foodborne Infectious Diseases Beethovenstraße 6 8010 Graz E-Mail: claudia.mikula@ages.at</td>
<td>Dr. Christian Kornschober Austrian Agency for Health and Food Safety Institute of Medical Microbiology and Hygiene Centre for Foodborne Infectious Diseases Department of reference centres and reference laboratories Beethovenstraße 6 8010 Graz</td>
</tr>
<tr>
<td>Resistance report Campylobacter</td>
<td>Dr. m Sandra Köberl-Jelovcan</td>
<td>Austrian Agency for Health and Food Safety Institute for Medical Microbiology and Hygiene Centre for Foodborne infectious diseases Department of reference centres and reference laboratories Beethovenstraße 6 8010 Graz E-Mail: sandra-birgitta.koebel-jelovcan@ages.at, humanmed.graz@ages.at</td>
<td>Dr. Christian Kornschober Austrian Agency for Health and Food Safety Institute of Medical Microbiology and Hygiene Centre for Foodborne Infectious Diseases Department of reference centres and reference laboratories Beethovenstraße 6 8010 Graz</td>
</tr>
<tr>
<td>Resistance report Salmonella</td>
<td>Dr. Christian Kornschober</td>
<td>Austrian Agency for Health and Food Safety Institute of Medical Microbiology and Hygiene Beethovenstraße 6 8010 Graz E-Mail: christian.kornschober@ages.at, humanmed.graz@ages.at</td>
<td>PD Dr. Burkhard Springer Austrian Agency for Health and Food Safety Institute of Medical Microbiology and Hygiene Beethovenstraße 6 8010 Graz</td>
</tr>
<tr>
<td>Resistance report Shigella</td>
<td>Mag. a Dr. m Ingeborg Lederer</td>
<td>Austrian Agency for Health and Food Safety Institute of Medical Microbiology and Hygiene Centre for Foodborne Infectious Diseases Department of reference centres and reference laboratories Beethovenstraße 6 8010 Graz E-Mail: ingeborg.lederer@ages.at</td>
<td>Dr. Christian Kornschober Austrian Agency for Health and Food Safety Institute of Medical Microbiology and Hygiene Centre for Foodborne Infectious Diseases Department of reference centres and reference laboratories Beethovenstraße 6 8010 Graz</td>
</tr>
<tr>
<td>Contributions</td>
<td>Authors / Co-Authors</td>
<td>Contact persons</td>
<td>Reviewers</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Resistance report Yersinia</td>
<td>Dr. Shiva Pekard-Amenitsch</td>
<td>Austrian Agency for Health and Food Safety Institute of Medical Microbiology and</td>
<td>Austrian Agency for Health and Food Safety Institute of Medical Microbiology and Hygiene Centre for Foodborne Infectious Diseases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hygiene Graz Beethovenstraße 6 8010 Graz</td>
<td>Beethovenstraße 6 8010 Graz</td>
</tr>
<tr>
<td></td>
<td>E-Mail: shiva.pekard-amenitsch@ages.at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance report Tuberculosis</td>
<td>PD Dr. Daniela Schmid, MSc PD Mag. Dr. Alexander Indra</td>
<td>Austrian Agency for Health and Food Safety Institute of Medical Microbiology and</td>
<td>Austrian Agency for Health and Food Safety Centre for Foodborne Infectious Diseases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hygiene Vienna Währingerstraße 25a 1090 Wien</td>
<td>Centre for Foodborne Infectious Diseases Beethovenstraße 6 8010 Graz</td>
</tr>
<tr>
<td></td>
<td>E-Mail: daniela.schmid@ages.at, alexander.indra@ages.at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance report Neisseria gonorrhoeae</td>
<td>Dr. Angelika Eigentler Microbiology Laboratory Möst</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Franz-Fischer-Straße 7b 6020 Innsbruck</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-Mail: eigentleran@mb-lab.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Steliana Huhulescu Dr. Sonja Hirk</td>
<td>Austrian Agency for Health and Food Safety Institute of Medical Microbiology and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hygiene Vienna Währingerstraße 25a 1090 Wien</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-Mail: steliana.huhulescu@ages.at, sonja.hirk@ages.at</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Univ.-Prof. Dr. Robert Zangerle</td>
<td>University Clinic of Dermatology and Venereology Anichstraße 35 6020 Innsbruck</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributions</td>
<td>Authors / Co-Authors</td>
<td>Contact persons</td>
<td>Reviewers</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Resistance report Yeasts | Univ.-Prof. in Dr. in Birgit Willinger | Medical University Vienna
Clinical Department of Microbiology
Clinical Institute of Laboratory Medicine
Währinger Gürtel 18–20/5P
1090 Wien
E-Mail: birgit.willinger@meduniwien.ac.at | Univ.-Prof. in Dr. in Cornelia Lass-Flörl | Medical University Innsbruck
Department of Hygiene, Microbiology and Social Medicine
Fritz-Pregl-Straße 3
6020 Innsbruck |
| Resistance report Moulds | Univ.-Prof. in Dr. in Cornelia Lass-Flörl | Medical University Innsbruck
Department of Hygiene, Microbiology and Social Medicine
Fritz-Pregl-Straße 3
6020 Innsbruck
E-Mail: cornelia.lass-floerl@i-med.ac.at | Univ.-Prof. in Dr. in Birgit Willinger | Medical University Vienna
Clinical Department of Microbiology
Clinical Institute of Laboratory Medicine
Währinger Gürtel 18–20/5P
1090 Wien |
| Resistance report of the Austrian HIV Cohort Study Part 1: Transmission of drug-resistant HIV in Austria | Mag. a Stefanie Strickner
MMag. a Michaela Rappold | Univ.-Prof. Dr. Robert Zangerle
University Clinic of Dermatology and Venereology
Anichstraße 35
6020 Innsbruck
E-Mail: lki.ha.hiv-kohorte@tirol-kliniken.at | Univ.-Prof. in Dr. in Elisabeth Puchhammer-Stöckl | Medical University Vienna
Department of Virology
Kinderspitalgasse 15
1095 Wien |
| Resistance report of the Austrian HIV Cohort Study part 2: Resistance development under antiretroviral therapy | Mag. a Stefanie Strickner
MMag. a Michaela Rappold | Univ.-Prof. Dr. Robert Zangerle
University Clinic of Dermatology and Venereology
Anichstraße 35
6020 Innsbruck
E-Mail: lki.ha.hiv-kohorte@tirol-kliniken.at | Univ.-Prof. in Dr. in Elisabeth Puchhammer-Stöckl | Medical University Vienna
Department of Virology
Kinderspitalgasse 15
1095 Wien |
<table>
<thead>
<tr>
<th>Contributions</th>
<th>Authors / Co-Authors</th>
<th>Contact persons</th>
<th>Reviewers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report of antibiotic resistance monitoring according to the commission implementing decision 2013/652/EU in Austria, 2016</td>
<td>Dr. med. vet. Peter Much Hao Sun, Bakk. rer. soc. oec.</td>
<td>Austrian Agency for Health and Food Safety Department of Statistics (STA) Integrative risk assessment, data and statistics (DSR) Spargelfeldstraße 191 1220 Wien E-Mail: peter.much@ages.at</td>
<td>Univ.-Prof. Dr. Annemarie Käsbohrer Department/University Hospital of Farm Animal and Public Health in Veterinary Medicine University of Veterinary Medicine Veterinärplatz 1 A-1210 Wien</td>
</tr>
<tr>
<td>European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)</td>
<td>Univ.-Doz. DI Dr. Klemens Fuchs Mag. Reinhard Fuchs</td>
<td>Agency for Health and Food Safety Integrative Risk assessment, data and statistics Zinzendorfgasse 27 8010 Graz E-Mail: klemens.fuchs@ages.at E-Mail: reinhard.fuchs@ages.at</td>
<td>MR Dr. Elfriede Österreicher Federal Ministry of Health and Women’s Affairs Department II/B/15 (Zoonoses and coordination of international matters of the sector) Radetzkystraße2 1030 Wien</td>
</tr>
<tr>
<td>Antimicrobial Consumption in Human Medicine in Austria</td>
<td>Prim. a Univ.-Prof. Dr. Petra Apfalter Gerhard Fluch</td>
<td>Ordensklinikum Linz GmbH Elisabethinen Institute of Hygiene, Microbiology and Tropical Medicine National Reference Centre for Nosocomial Infections and Antibiotic Resistance Fadingerstraße 1 4020 Linz E-Mail: petra.apfalter@analyse.eu E-Mail: gerhard.fluch@ordensklinikum.at</td>
<td>PD OA Dr. Rainer Gattringer Ordensklinikum Linz GmbH Elisabethinen Institute of Hygiene, Microbiology and Tropical Medicine National Reference Centre for Nosocomial Infections and Antibiotic Resistance Fadingerstraße 1 4020 Linz</td>
</tr>
<tr>
<td></td>
<td>Stefanie Kirchner, BSc, MPH</td>
<td>Austrian Agency for Health and Food Safety Institute of Medical Microbiology and Hygiene Vienna Währingerstr. 25a 1090 Wien E-Mail: stefanie.kirchner@ages.at</td>
<td></td>
</tr>
<tr>
<td>Contributions</td>
<td>Authors / Co-Authors</td>
<td>Contact persons</td>
<td>Reviewers</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Resistance report Erwinia amylovora</td>
<td>Mag. Helga Reisenzein</td>
<td></td>
<td>Univ.-Prof. Dr. Franz Allerberger</td>
</tr>
<tr>
<td></td>
<td>Dr. Ulrike Persen</td>
<td>Austrian Agency for Health and Food Safety</td>
<td>Austrian Agency for Health and Food Safety</td>
</tr>
<tr>
<td></td>
<td>Austrian Agency for Health and Food Safety Sector</td>
<td>Food security</td>
<td>Spargelfeldstr. 191</td>
</tr>
<tr>
<td></td>
<td>Institute of sustainable plant production</td>
<td></td>
<td>1220 Wien</td>
</tr>
<tr>
<td></td>
<td>Spargelfeldstraße 191</td>
<td></td>
<td>E-Mail: helga.reisenzein@ages.at</td>
</tr>
<tr>
<td></td>
<td>1220 Wien</td>
<td></td>
<td>E-Mail: ulrike.persen@ages.at</td>
</tr>
<tr>
<td></td>
<td>E-Mail: helga.reisenzein@ages.at</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-Mail: ulrike.persen@ages.at</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>